x^4+x^3+x^2+x+1 = 0.
Divide
            by x^2.
x^2+x+1+1/x+1/x^2 =
            0.
(x^2+1/x^2) +(x+1/x) +1 =
            0
(x+1/x)^2 -2 + (x+1/x)+1
            =0
(x+1/x)^2 +(x+1/x) -1 = 0. This is aquadratic equation
            in (x+1/x). Or
y^2 +y -1 =  0 , where y =
            x+1/x.
y1 = (-1+sqrt5)/2 , or y2 =
            (-1-sqrt5)/2
y1 = x+1/x = 
            (-1+sqrt5)/2
x^2 +(1-sqrt5)/2 *x  +1 =
            0
x1  =  {(-1+sqrt5)/2 + sqrt[(1-sqrt5)^2/4
            -4}/2
x1 = {-(1-sqrt5)/4 +
            sqrt(-5-sqrt5)/2}/2
x1 = {-(1-sqrt5)/4
            +sqrt(-1)sqrt(5+sqrt5)/4}
x2 = {-(1-sqrt5)/4 -sqrt(-1)
            sqrt(5+sqrt5)/4
Similarly we can solve for y2 = x+1/x =
            (-1-srqt5)/2
x^2 +(1+sqrt5)x+1 =
            0
x3 = -(1+sqrt5) /4+ [sqrt(sqrt5 -5)]/4
            or
x3  = -(1+sqrt5)/4
            +{sqrt(-1)sqrt(5-sqrt5)}/4
x4 = -(1+sqrt5)- {sqrt(-1)
            sqrt(5-sqrt5)}/4
S0 there are as above 4 complex
            roots x1,x,2 ,x3 and x4..
No comments:
Post a Comment